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Abstract. In this paper, we propose a genetic algorithm, called GenSPN,

for finding highly probable differential characteristics of substitution-

permutation networks (SPNs). A special fitness function and a heuristic

mutation operator have been used to improve the overall performance

of the algorithm. We report our results of applying GenSPN for find-

ing highly probable differential characteristics of Serpent block cipher. A

comparison of the resultant characteristics with the previously published

works shows that GenSPN can find differential characteristics of higher

probabilities.
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1. Introduction

Differential cryptanalysis is a method, which analyzes the effect of particular
differences in plaintext pairs on the differences of the resultant ciphertext pairs
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[2]. Differential cryptanalysis is usually a chosen plaintext attack, meaning
that the attacker must be able to obtain encrypted ciphertexts for some set of
plaintexts of his choosing. There are, however, extensions that would allow a
known plaintext or even a ciphertext-only attack. The basic method uses pairs
of plaintext related by a constant difference; difference can be defined in several
ways, but the eXclusive OR (XOR) operation is usual. The attacker then
computes the differences of the corresponding ciphertexts, hoping to detect
statistical patterns in their distribution. The resulting pair of differences is
called a differential [5]. In the basic attack, one particular ciphertext difference
is expected to be especially frequent; in this way, the cipher can be distinguished
from random. More sophisticated variations allow the key to be recovered faster
than exhaustive search [6].

For any particular cipher, the input difference must be carefully selected if
the attack is to be successful. An analysis of the algorithm’s internals is un-
dertaken; the standard method is to trace a path of highly probable differences
through the various stages of encryption, termed a differential characteristic.

The process of finding the best differential characteristic for block ciphers
is very time-consuming, and the complexity of the process usually increases
exponentially with the addition of rounds [3].

In this paper, we propose GenSPN, a genetic algorithm for finding highly
probable differential characteristics of substitution-permutation networks (SPNs).
We report our results of applying GenSPN for finding highly probable differ-
ential characteristics of Serpent block cipher. We also compare the resultant
characteristics with the previously published works.

The remainder of this paper is organized as follows: Section 2 introduces
SPNs, Section 3 provides an overview of genetic algorithms, and Section 4 de-
scribes our proposed genetic algorithm for finding highly probable differential
characteristics of SPNs. Section 5 reports the results of the experiments done
to find highly probable 5 and 6-round characteristics for differential cryptanal-
ysis of 6 and 7-round Serpent block cipher and finally Section 6 draws some
conclusions.

2. Substitution-Permutation Networks

Shannon suggested that practical and secure product ciphers may be con-
structed using a mixing transformation consisting of a number of layers or
rounds of confusion and diffusion. The substitution-permutation networks
(SPNs) [5] structure is directly based on the above concepts.

An r-round SPN requires (r+1) n-bit subkeys. Each round consists of three
layers of key mixing, substitution, and linear transformation. In the key mixing
layer, the n-bit round input is bitwise XORed with the subkey for that round.
In the substitution layer, the resulting block is partitioned into l subblocks of
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size m, and each subblock becomes the input to a bijective m×m substitution
box (S-box). In the linear transformation layer, the output from the substitu-
tion stage is processed through an invertible n-bit linear transformation. The
linear transformation is usually omitted from the last round, since it is easily
shown that its inclusion adds no cryptographic strength to the SPN. A final
subkey is XORed with the output of round r to form the ciphertext.

2.1. Serpent

Serpent [1] is a 32-round SPN, which encrypts a 128-bit plaintext P to a
128-bit ciphertext C in 32 rounds under the control of 33 128-bit subkeys. The
cipher itself consists of:

• An initial permutation IP ;
• 32 rounds, each consisting of a key mixing operation, a pass through

S-boxes, and (in all but last round) a linear transformation. In the
last round, this linear transformation is replaced by an additional key
mixing operation;

• A final permutation FP .

The rounds are numbered from 0 to 31, where the first round is round 0 and the
last is round 31. Serpent has a set of eight 4-bit to 4-bit S-boxes. Each round
function Ri(i ∈ {0, . . . , 31}) uses only a single replicated S-box. For example,
R0 uses S0, 32 copies of which are applied in parallel. The set of eight S-boxes
is used four times. Thus, after using S7 in round 7, again S0 in round 8, S1 in
round 9, and so on are used.

3. Genetic Algorithms

Genetic algorithms (GAs) are adaptive methods, which may be used to
solve search and optimization problems [4]. In genetic algorithms, the term
chromosome typically refers to a candidate solution to a problem, often encoded
as a bit string. The genes are either single bits or short blocks of adjacent bits
that encode a particular element of the candidate solution. A collection of
chromosomes is called a population.

To solve a problem with genetic algorithms, a fitness function must be de-
vised for that problem. Given a particular chromosome, the fitness function
returns a single numerical fitness, or figure of merit, which is supposed to be
proportional to the utility or ability of the individual, which that chromosome
represents. Selection, crossover, and mutation operators [8] are usually used in
genetic algorithms for reproduction. Each of the operators is introduced as the
following:

• Selection
This operator selects some chromosomes in the population for repro-
duction. The fitter the chromosome, the more times it is likely to



48 ABADI, SADEGHIYAN, GHAEMI, ALIPOUR

be selected to reproduce. Different selection methods such as Fitness-
Proportionate, Elitism, Boltzmann, and Tournament [8] are proposed
to be used in genetic algorithms.

• Crossover
This operator takes a pair of chromosomes amongst current generation
and produces a new pair of chromosomes called offspring. Crossover
is not usually applied to all pairs of chromosomes selected for mat-
ing. Normally, the likelihood of crossover for each pair of chromosomes
is considered between 0.60 to 0.95, which is called crossover rate or
crossover probability and represented as Pc. If crossover is not applied,
offspring are produced simply by duplicating the parents. This gives
each chromosome a chance of passing on its genes without the disrup-
tion of crossover.

• Mutation
Mutation is applied to each offspring individually after crossover. It
randomly alters each gene with a small probability called mutation rate
or mutation probability and represented as Pm. After the mutation is
done, the generated chromosomes, considered as new generation, are
sent for the next run of the algorithm.

4. GenSPN

In this section, we describe GenSPN, a genetic algorithm for finding highly
probable differential characteristics of SPNs. First, the chromosome structure
and the process of initial population generation are presented. Then, the fit-
ness function and the genetic operators of the proposed genetic algorithm are
introduced.

4.1. Chromosome Structure

To find a k-round differential characteristic of an n-bit SPN, we assume that
each chromosome consists of k + 1 genes, each of which is an n-bit string. The
first gene represents input difference of round 1 and the next k genes represent
output difference of rounds 1 to k. By input/output difference of a round, we
mean the input/output difference of substitution functions in that round. In
Figure 1, the structure of chromosomes used to find a 5-round characteristic is
illustrated. Regarding the chromosome structure, the input difference of round
2 onwards can be calculated by applying a linear transformation to output
difference of its prior round.



FINDING HIGHLY PROBABLE DIFFERENTIAL CHARACTERISTICS. . . 49

1 3 4 5 6 2 

n-bit n-bit n-bit n-bit n-bit n-bit 

Input 
Difference of 

Round 1 

Output 
Difference of 

Round 1 

Output 
Difference of 

Round 2 

Output 
Difference of 

Round 3 

Output 
Difference of 

Round 4 

Output 
Difference of 

Round 5 

Figure 1. The chromosome structure used to find as 5-round characteristic.

Let the chromosome a be represented as (ga,1, ga,2, . . . , ga,k+1). The k-round
differential characteristic corresponding to the chromosome a consists of k 1-
round differential characteristic:

Round 1 differential characteristic: ga,1 −→ ga,2

Round 2 differential characteristic: θL(ga,2) −→ ga,3

. . . . . .
Round k differential characteristic: θL(ga,k) −→ ga,k+1

If we assume that substitution functions of size m are used in the round
function of the cipher, each n-bit gene can be regarded as l substrings in which
the substring j(1 ≤ j ≤ l) has the size of m bits and corresponds to the input or
output difference of the jth substitution function in the round function. Hence,
the gene i in the chromosome a can be represented as

ga,i = (g1
a,i, g

2
a,i, . . . , g

l
a,i)(1)

where

|ga,i| = n,

|gj
a,i| = m, 1 ≤ j ≤ l

4.2. Initial Population

To generate the initial population, the gene corresponding to the output
difference of some round is considered as the fixed gene. We call the genes that
are placed after the fixed gene as forward genes and the genes that are placed
before the fixed gene as backward genes.

The position and value of the fixed gene, which are determined by cryptan-
alyzer, are fixed for all chromosomes. Then, the initial values of other genes in
each chromosome are determined using a forward-backward procedure:

Let xf be the position of the fixed gene and the chromosome a be represented
as (ga,1, . . . , ga,xf

, . . . , ga,k+1). The forward genes ga,i, i = xf + 1 to k + 1, are
initialized as the following: First, by applying the linear transformation to the
gene ga,i−1 the input difference of round i− 1 is calculated. Then, the forward
gene ga,i (that corresponds to output difference of the round i−1) is considered
as l substrings of size m. Each substring corresponds to the output difference of
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a substitution function. Hence, its value is chosen randomly from the difference
distribution table of the substitution function, based on its corresponding input
difference, and proportional to its probability of occurrence.

To initialize the backward genes ga,i, i = xf − 1 down to 2, the gene ga,i+1

(that corresponds to output difference of the round i) is considered as l sub-
strings of size m. Each substring would be the output difference of a substi-
tution function. Hence, the corresponding input difference of each substring
is chosen randomly from the difference distribution table of the substitution
function and proportional to its probability of occurrence. Then, by applying
the inverse of the linear transformation to the outcome, the value of the gene
ga,i is determined. To initialize the backward gene ga,1, after the calculation
of input difference of round 1, its value is given to this gene.

4.3. Fitness Function

To evaluate the fitness of chromosomes, we use three fitness functions of f ,
f1, and f2.

For each chromosome a, f(a) represents the fitness of the chromosome itself,
f1(a) represents the fitness of its forward genes and f2(a) represents the fitness
of its backward genes. We call f as the overall fitness function, f1 as the
forward fitness function and f2 as the backward fitness function.

Let the chromosome a be represented as (ga,1, . . . , ga,xf
, . . . , ga,k+1). The

overall fitness, the forward fitness and the backward fitness of chromosome a

are respectively calculated as

f(a) = (log2 Pr(ga,1 −→ ga,2) ∗
k∏

i=2

Pr(θL(ga,i) −→ ga,i+1))2(2)

f1(a) = (log2

k∏

i=xf

Pr(θL(ga,i) −→ ga,i+1))2(3)

f2(a) = (log2 Pr(ga,1 −→ ga,2) ∗
xf−1∏

i=2

Pr(θL(ga,i) −→ ga,i+1))2(4)

where

Pr(∆I −→ ∆O) =
l∏

j=1

Pr(∆Ij −→ ∆Oj)

In the above equations, θL is the linear transformation, ∆I −→ ∆O denotes
the differential characteristic of each round, Pr(∆I −→ ∆O) is differential
characteristic probability of that specific round, and ∆Ij −→ ∆Oj shows the
differential characteristic of the jth substitution function in that round.

According to Equation (2), the chromosome a is fitter than the chromosome
b if f(a) < f(b). Also, according to Equations (3) and (4), the chromosome a
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has better forward or backward fitness than the chromosome b if f1(a) < f1(b)
or f2(a) < f2(b).

4.4. Selection

To select two chromosomes for reproduction, we use the Fitness-Proportionate
selection. One chromosome is chosen according to forward fitness f1, and other
is chosen according to backward fitness f2.

We also use a mild form of Elitism selection: chromosome with the best
overall fitness, chromosome with the best forward fitness, and chromosome
with the best backward fitness is carried onto the next generation.

4.5. Crossover

Regarding the position and value of one of the genes is assumed to be fixed
for all chromosomes during the generation of the initial population, the fixed-
point crossover operator is used to perform crossover. In this operator, the fixed
gene’s boundary is considered as the crossover fixed point. Then, all genes to
the right hand of this position in the parent chromosomes are exchanged to
produce the offspring chromosomes.

The crossover point, denoted as xc, remains fixed during the optimization
process. If the values of parent chromosomes are:

(ga,1, ga,2, . . . , ga,xc , ga,xc+1, . . . , ga,k+1)

(gb,1, gb,2, . . . , gb,xc , gb,xc+1, . . . , gb,k+1)

Two offspring chromosomes will result as the following:

(ga,1, ga,2, . . . , ga,xc , gb,xc+1, . . . , gb,k+1)

(gb,1, gb,2, . . . , gb,xc , ga,xc+1, . . . , ga,k+1)

4.6. Heuristic Mutation

To perform the heuristic mutation on a chromosome, first the mutation point
(xm) is randomly selected. If xf < xm ≤ k + 1, then the values of gene gxm

and its following genes will change. The values of these genes are determined
similar to the method discussed in Section 4.2 for initializing the forward genes.
If 1 ≤ xm < xf , then the values of gene gxm and its prior genes will change.
The values of these genes are determined similar to the method discussed for
initializing the backward genes. It should be mentioned that if xm = xf , then
the heuristic mutation will not happen.

5. Experimental Results

We applied GenSPN to Serpent. In order to find a k-round characteristic
for Serpent, each chromosome consists of k + 1 128-bit genes.
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Using GenSPN, a highly probable 5-round and a highly probable 6-round
differential characteristic of Serpent were found. The characteristics are related
to rounds 1 to 5 and 1 to 6, respectively. We performed 10 runs of GenSPN
with different random seeds and reported the best results obtained from these
10 runs.

Table 1 shows the parameter settings of GenSPN. Each run of GenSPN
for finding 5-round and 6-round differential characteristics was performed in
the average time of 13.8 and 137.4 seconds, respectively. We conducted the
experiments on a Pentium 4/3.2GHZ/1GB RAM running Windows XP.

Table 1. The parameter settings of GenSPN.

Number of 
Rounds 

Number of 
Generations 

Population       
Size 

Crossover        
Rate 

Mutation 
Rate 

5 100 200 0.95 0.20 

6 500 400 0.95 0.40 

Tables 2 and 3 show the best results obtained. The probability of the found
5-round differential characteristic for rounds 1 to 5 is 2−65 and the probability
of the found 6-round differential characteristic for rounds 1 to 6 is 2−95. These
characteristics can be used for differential cryptanalysis of the 6 and 7-round
Serpent. These differential characteristics have better probabilities than pre-
viously reported differential characteristics with probabilities of 2−80 [7] and
2−97 [9].

Figures 2 and 3 show the best overall fitness function at each generation
versus the generation number of the best run of GenSPN.

Table 2. The found 5-round differential characteristic of Serpent, rounds 1 to 5.

Round S-
box Input Difference of S-box Output Difference of S-box Prob.

1 S1 000ED1409D104000E000000000000000 00082A6042A0C0008000000000000000 2-20 

2 S2 00AA0A000A0000000000000000000000 00A20400080000000000000000000000 2-11 

3 S3 00A00000000000000000000000000000 00200000000000000000000000000000 2-3 

4 S4 02000000000000000000000000001000 0600000000000000000000000000A000 2-5 

5 S5 64000000400000001010081810030244 690000009000000060600C6C60080D99 2-26 

   Total Probability 2-65 
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Table 3. The found 6-round differential characteristic of Serpent, rounds 1 to 6.

Round S-
box Input Difference of S-box Output Difference of S-box Prob.

1 S1 000090040D8104DD0E00000000AA0400 0000400602FA06220800000000330600 2-25 

2 S2 A00B000430E000600000000000A00C00 A004000A204000800000000000A00400 2-21 

3 S3 0000400A000000000000000000000000 0000A004000000000000000000000000 2-6 

4 S4 00000000000000400000000000000000 00000000000000300000000000000000 2-2 

5 S5 20000000100002004000000000011000 A000000030000B00500000000006A000 2-17 

6 S6 00700002004000001010080600430154 0020000700A00000E0E00B0100A20E3A 2-24 

   Total Probability 2-95 
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Figure 3. The progress of the best overall fitness for 6-round

characteristic of Serpent, rounds 1 to 6.

To see how some parameters can affect the performance of GenSPN, we
performed some additional experiments for different settings of Population Size
and Mutation Rate parameters.

Since approaches based on genetic algorithms are stochastic in nature, we
do not obtain the same result every time we run the algorithm. For this reason,
we performed 10 runs for each setting of the algorithm. Figures 4 and 5 show
the average of the best overall fitness function at each generation of these 10
runs versus the generation number for different settings of Population Size
parameter. The settings of other parameters are the same as shown in Table 1.
The figures suggest that by increasing the value of Population Size parameter,
the average of the best overall fitness function will decrease. Therefore, we will
obtain differential characteristics of higher probabilities.
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Figure 5. The progress of the average of the best overall fitness

of 10 runs for 6-round characteristic of Serpent, rounds 1 to 6.

Figures 6 and 7 show the average of the best overall fitness function at each
generation of the 10 runs versus the generation number for different settings of
Mutation Rate parameter.
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Figure 6. The progress of the average of the best overall fitness

of 10 runs for 5-round characteristic of Serpent, rounds 1 to 5.
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Figure 7. The progress of the average of the best overall fitness

of 10 runs for 6-round characteristic of Serpent, rounds 1 to 6.

6. Conclusions

In this paper, we proposed a genetic algorithm, GenSPN, for finding highly
probable differential characteristics of SPNs. We also applied the proposed ge-
netic algorithm to find highly probable differential characteristics of Serpent.
A 5-round and a 6-round differential characteristic for the rounds 1 to 5 and 1
to 6 were found in a relatively short time. These characteristics can be used
for differential cryptanalysis of the 6 and 7-round Serpent. These differential
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characteristics have better probabilities of 2−65 and 2−95 than previously re-
ported differential characteristics with probabilities of 2−80 [7] and 2−97 [9]. So
far, no differential characteristic of Serpent with more rounds is reported.

The results of our experiments show that GenSPN can effectively find highly
probable differential characteristics of SPNs.
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